Physical Features of Mountains

From FIS Freestyle wiki

Revision as of 12:14, 16 May 2010 by Joe (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search

PHYSICAL FEATURES OF MOUNTAINS

Physically, existing mountains have only slope and elevation in common, and the fact that all will ultimately be eroded into insignificance, while others will be created. They may be formed by uplift of extensive blocks of land around major faultlines, or by folding of rock strata, both of which result from continental movements, or by volcanic activity often associated with both faulting and folding.

Any given segment of land may well have been affected by all three processes over the course of Earth history, and so, with the exception of volcanic cones, mountain ranges will often be composed of a variety of igneous, sedimentary and metamorphic rock types. Accordingly, there is wide variation in features that depend on rock type, such as erosion potential, slope stability and soil.

Mountains vary widely in age. One of the better known episodes of ancient folding affected rocks now within northwest Europe around 400 million years ago; geological evidence for this early mountain-building has been largely obscured by later earth movements and the levelling effects of erosion. Much of the folding involved in uplift of the Alpine-Himalayan chains took place around 35 million years ago, and these tend to retain the sharp peaks and ridges typical of younger mountain ranges.

The Earth’s very youngest peaks are volcanic in origin. Paricutin in Mexico, for example, had built a cinder cone about 500 m high within a year of its eruption in 1943 (total elevation about 2 770 m).


Reference

  1. Mountain Watch Defining Mountain Regions [1]

Return to Snow and Weather Glossary, Working with Snow, Freestyle Skiing

Personal tools