(Difference between revisions)
 Revision as of 20:32, 23 July 2010 (edit)Joe (Talk | contribs)← Previous diff Revision as of 20:36, 23 July 2010 (edit) (undo)Joe (Talk | contribs) Next diff → Line 3: Line 3: '''[[Average Grade]]''' This is the average '''[[slope]]''' gradient (in percent) of the terrain under the length of the ski lift, from top terminal to '''[[bottom terminal]]'''. '''[[Average Grade]]''' This is the average '''[[slope]]''' gradient (in percent) of the terrain under the length of the ski lift, from top terminal to '''[[bottom terminal]]'''. - Reference + Calculate slopes one must have some understanding of it. + + '''[[Slope]]''', '''[[tilt]]''' or '''[[inclination]]''' can be expressed in three ways: + + # As a ratio of the rise to the run (for example 1 in 20) + # As an angle (almost always in degrees) + # As a percentage called the "grade" which is the (rise ÷ run) * 100. + + Of these 3 ways, slope is expressed as a ratio or a grade much more often than an actual angle and here's the reason why. + + Stating a ratio such as 1 in 20 tells you immediately that for every 20 horizontal units traveled, your altitude increases 1 unit. + + Stating this as a percentage, whatever horizontal distance you travel, your altitude increases by 5% of that distance. + + + == Reference == + * 1728 Software Systems ''Slope of a Road or the "Pitch'' of a Roof[http://www.1728.com/gradient.htm] * 1728 Software Systems ''Slope of a Road or the "Pitch'' of a Roof[http://www.1728.com/gradient.htm]

## Revision as of 20:36, 23 July 2010

Average Grade This is the average slope gradient (in percent) of the terrain under the length of the ski lift, from top terminal to bottom terminal.

Average Grade This is the average slope gradient (in percent) of the terrain under the length of the ski lift, from top terminal to bottom terminal.

Calculate slopes one must have some understanding of it.

Slope, tilt or inclination can be expressed in three ways:

1. As a ratio of the rise to the run (for example 1 in 20)
2. As an angle (almost always in degrees)
3. As a percentage called the "grade" which is the (rise ÷ run) * 100.

Of these 3 ways, slope is expressed as a ratio or a grade much more often than an actual angle and here's the reason why.

Stating a ratio such as 1 in 20 tells you immediately that for every 20 horizontal units traveled, your altitude increases 1 unit.

Stating this as a percentage, whatever horizontal distance you travel, your altitude increases by 5% of that distance.

## Reference

• 1728 Software Systems Slope of a Road or the "Pitch of a Roof[1]